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Image formation in multiphoton fluorescence microscopy through double-layer turbid tissue media
is investigated using Monte Carlo simulation. With the help of the concept of the effective point
spread function, the relationship of image resolution and signal level to the thickness and scattering
properties of the double-layer turbid media under single-, two-, and three-photon excitation is
revealed. Results show that for a double-layer turbid medium of a given thickness, small particles
in the top layer result in a quicker degradation of signal level than large particles in the top layer.
This model is then applied to study the penetration depth of multiphoton fluorescence microscopy
through human skin tissue which exhibits a layered structure. It is predicated that ysing 3
excitation leads to a signal level up to two orders of magnitude higher than that yméeciation,

while diffraction-limited image resolution can be maintained for skin tissue of thickness up to 500
pum. © 2002 American Institute of PhysiddDOIl: 10.1063/1.1459107

I. INTRODUCTION tissuet*~!"the penetration depth and the limit of image reso-
lution under multiphoton excitation cannot be determined
Two-photon () fluorescence microscopy is a useful from the current Monte Carlo simulation model:! This
tool for biological and medical studitbecause it allows one grticle establishes a Monte Carlo simulation model for 1

to achieve an image of a thick sample without using a con2p, and 3 fluorescence microscopic imaging through
focal geometry. Because of the utilization of an infrared double-layer turbid media.

laser beam for excitation, this technique offers an equivalent  Thijs article is organized as follows. In Sec. Il, a Monte

access to ultraviolJV) excitation and reduces the effect of Carlo model for a double-layer turbid medium is introduced

Rayleigh scattering in tissue medi&’ Therefore, this in terms of the concept of the EPSF for multiphoton fluores-
method has been adopted in high-resolution imaging througBence microscopy. The effect of the size of scattering par-
a thick tissu€:® Since the strength of Rayleigh scattering isticles and the thickness of a double-layer structure on the
inversely proportional to the fourth power of the illumination EPSF is investigated in Sec. IIl. Transverse image resolution
wavelength, it has been expected that the effect of multipleind signal level through a double-layer turbid medium under
scattering in tissue media can be further reduced under threg@p, 2p, and 3 excitation are analyzed in Sec. IV. In Sec. V,

photon (3) excitation!® However, the effect of Mie scat- the new Monte Carlo model is applied to investigating trans-
tering on multiphoton excitation is more complicated. verse image resolution and signal level in a skin tissue me-

To understand the effect of multiple scattering on imagedium under P, 2p, and P excitation. Finally, a conclu-
quality (resolution and signal levein single-photon (p) sions is given in Sec. VI.

and two-photon (B) fluorescence microscopy, one usually

uses the Monte Carlo simulation method based on Mie scat-

tering and geometric opties'! because conventional image !l MONTE CARLO SIMULATION MODEL FOR A

theory? based on Fourier optics is not applicable. In particu-POUBLE-LAYER TURBID MEDIUM

lar, the concept of the effective point spread functiBRSH, A schematic diagram for imaging through a double-layer

which describes not only the property of a microscopic im-yhiq medium in a reflection-mode fluorescence microscope

aging system but also the scattering property of turbidg ghown in Fig. 1. The top and bottom layers of thicknesses

media;” has been introduced for fluorescence iMagey andd, are labeled with., andL,, respectively. The focal

simulation*® As a result, the relationship of image resolution depthf, is defined as the distance between the medium sur-

and signal level to the focal depth in a4t9urb|d medium has,ce to the focal plane. The Monte Carlo simulation method

been obtained underpland 2p excitation"” _is similar to that reported elsewhémxcept for the treatment
So far, the turbid media co_rl?dereq In current MICro-¢o the interface between the two layers. When a photon is

scopic Monte Carlo simulatiofi§™"are single-layer struc- incigent on the interface, a weighting function is given to the

tures. However, biological_ tis_sue usually exhibits a compleX.efiacted and transmitted photons according to the Fresnel
layer structure such as skin tissue. Althoughahd 3 fluo- . efficient!®

rescence microscopy has been used to image through skin 1,4 steps are involved in order to derive an EPSF at a

given focal depthfy. First, a photon distributior . (r)
3E|ectronic mail: mgu@swin.edu.au (wherer is the radial distance from the foduis calculated
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D and 3 excitation is 400, 800, and 1200 nm, respectively,
and that the fluorescence wavelengify, is 400 nm in the
three cases.

To compare the results of a double-layer turbid medium
with those from a single-layer turbid medithwe choose
two kinds of spherical scattering particles suspended in wa-
ter. The first kind, called large particléks), has a diametes
of 0.48 um, and the second one, called small partici8s
has a diameter of 0.202m. Each layer in the double-layer
structure consists of either large particles or small particles.
If the top layer(L,) includes large particles and the bottom
layer (L,) includes small particles, the double-layer turbid
structure is called the LS medium. Otherwise, it is called the
SL medium. The thickness of each of the two layers of the
media is assumed to be @in. According to Mie scattering
theory?° the corresponding anisotropy value g and scattering

mean free path length, are shown in Table I.
FIG. 1. Schematic diagram of imaging through a double-layer turbid me-
dium in a reflection-mode fluorescence microscope. S: source; D: detector;
DM: dichromic mirror;L; andL,: top and bottom layersj, andd,: the Ill. EFFECTIVE POINT SPREAD FUNCTION

thickness ofL; andL,; f4: the focal depthj, and\g,,: the wavelength  |IN DOUBLE-LAYER TURBID MEDIA
for excitation and fluorescence.

As EPSF is a performance measure of an imaging sys-
tem including a turbid medium, the EPSF at different focal
using the Monte Carlo simulation, giving a weighting func- depths in the LS and SL media undgp,12p, and 3 exci-
tion for a fluorescence photdrFor 1p, 2p, and P excita- tation is investigated in this section.
tion, the weighting function can be expressed as The EPSFs for f fluorescence imaging at three focal
pn(1) =gl (1) 1) depths in the LS and SL scattering media are shown in Figs.
n nrextt 2(a) and 2b), respectively. The focal depths of 40, 60, and
wheren=1, 2, 3 corresponds topl 2p, and 3 excitation, 80 um mean that the focus is within the top layer, at the
respectively. In the second step of the Monte Carlo simulaboundary, and within the bottom layer, respectively. As ex-
tion, fluorescence photons excited by Efj. are traced from  pected, when the focal depth increases, the EPSF becomes
the positions where they are excited and to the detectdsroader in both LS and SL media because of the increase of
plane. Those fluorescence photons reaching the detector legte scattering events.
to a photon distributionh,(r) which is termed as the A comparison of the EPSFs between the LS and SL me-
EPSF*3 Thus the image intensity of an object with a fluo- dia shows two physical features. First, at a given focal depth
rescence strength functigd(x,y) can be given by a convo- (Fig. 3), the EPSF in the LS case is narrower than that in the

lution relation®® SL case. Second, the difference of the EPSF between LS and
" SL media in the bottom layer is smaller than that in the top
Ih(X,y)= f J ha(VX2+y2)O(x—x",y—y")dx'dy’. layer. These properties can be understood from the change in

the anisotropy value g in the LS and SL media. According to

2) our previous studie: a smaller scattering particle with a
In the Monte Carlo simulation, ZOillumination photons lower anisotropy value g results in a larger scattering angle
were used to ensure the accuracy of an EPSF unge@f, and thus a broader distribution of scattered photons. Conse-
and 3 excitation. The numerical aperture of the objectivequently, when the focal depth is moved into the bottom layer,
was chosen to be 0.25 as our previous study has shown théite broadening of the EPSF in the SL medium becomes
such an objective can remove scattered photons effectivelsiower, whereas that in the LS medium becomes quicker,
without losing signal appreciabfFurthermore, the effect of which leads to the behavior in Fig(t8.
refractive index mismatching is negligible for an objective Figure 4 gives the EPSFs fopZluorescence imaging at
with numerical aperture less than 025t is assumed that the three focal depths in the LS and SL turbid media. It can
the wavelength of the excitation beaix,,, under Ip, 2p, be seen that the EPSF in both LS and SL media does not

TABLE |. Scattering parameters of the turbid media undpr 2p, and 3 excitation.

1p excitation 2p excitation 3p excitation Fluorescence
Nex=400 nm Nex=800 nm Nex=1200 nm Nfiwo=400 nm
p (um) g s (um) g s (um) g Is (um) g s (um)
0.48(L) 0.89 3.68 0.73 15 0.509 44.2 0.89 3.68

0.202(S) 0.69 3.68 0.2 15 0.086 44.2 0.69 3.68
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FIG. 2. EPSF for p fluorescence imaging at different focal depths in the double-layer turbid medauim: the LS mediumjb) in the SL medium.
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change appreciably and that its width is almost close to thadtatistically scattered into a larger angle than those in the L
predicted by the diffraction theotywhen the focal depth is layer (larger anisotropy valug).?! It was demonstratéd
less than 6Qum. This feature is caused by the fact that thethat the photons scattered at a larger angle lead to lower
contribution from ballistic photons to2fluorescence emis- resolution than the photons scattered at a smaller angle. As a
sion may be dominant when the focal depth is 4-5 times theesult, the increase of the anisotropy vaturom the S layer
scattering mean free path length. to the L layer in the SL medium results in the decreas@ of
Figure 5 shows the comparison of the EPSFs betweenear the interface. In LS medium, the situation is just re-
LS and SL media at a given focal depth. Unlike the situationserved. This feature implies that the two resolution curves
under Ip excitation, the EPSF in the SL medium undgr 2 may lead to a cross point at a certain focal depth in the
excitation is slightly narrower than that in the LS medium. bottom layer, as demonstrated in Figaj7
This property is consistent with the previous result in the  In the top layer, the signal level in the LS medium drops
single-layer turbid medium underp2excitation’ For the  more slowly than that in the SL medium, as may be expected
given scattering mean free path lendffable ), the small  from the anisotropy valug in the corresponding layers. The
anisotropy valueg in the S layer results in a broad distribu- |arger the anisotropy valug, the smaller the scattered angle
tion of scattered photons and their contribution to intensity isand thus the higher the signal level. Once the focal depth is
reduced because of the quadratic intensity dependence undgithin the bottom layer, the signal level of the LS medium
2p excitation. As a result, the central peak mainly resultingdrops more quickly than that in the SL medium because the
from ballistic photons in the SL medium becomes slightly anisotropy value g in the bottom layer of the LS and SL
narrower, compared with that in the LS medium. media reduces and increases, respectively. As a result, the

The EPSFs for B fluorescence imaging at the three fo- signal level in the SL medium is lower than that in the LS
cal depths in the LS and SL media are depicted in Fig. 6. Asnedium for the given thickness of the media.

expected, the EPSF in this case behaves in a diffraction- Transverse image resolution as a function of the focal

limited nature because the contribution from ballistic pho-depth in the LS and SL media undep 2xcitation is shown
tons is dominant as the given thickness of the double-layef Fig. 8a). The transverse resolution in the top layer of the
media is only 2—3 times larger than the scattering mean frees and SL media is almost close to the diffraction-limited

path length under 8 excitation. value, as expected from Fig. 4. Below the interface, the reso-
lution is degraded quickly in both cases, which means that
IV. TRANSVERSE RESOLUTION AND SIGNAL LEVEL the contribution from scattered photons is significantly in-

IN DOUBLE-LAYER TURBID MEDIA creased. The rate of resolution degradat®immediately
Based on the EPSF in the last section, we can investigateelow the interface is caused by two processes. The first is
image quality in the double-layer turbid medium in terms ofthe change in the anisotropy valge In terms of the expla-
image resolution and signal leveThe image of a thin sharp nation given for Fig. 7a), this effect leads to the increase and
edge embedded in a double-layer turbid medium can be cafiecrease of from the top to bottom layers of the LS and SL
culated using Eq(2). The transverse image resolutibnis  media, respectively. The second process is the significant
characterized by the distance between the 90% and 10% igontribution from the scattered photons when the focal depth
tensity points from the image intensity of the sharp edgds ~60 um,® which results in the increase @ in both me-
scanned in the direction. The signal level is the number dia. The combination of these two processes gives rise to the
of fluorescence photons collected by the detector and nofact that the degradation of resolution in the LS medium is
malized by the fluorescence signal strength when no scattefaster than that in the SL media when the focal depth moves
ing exists. The advantage of such a definition is that variafrom the top layer to the bottom layer. FiguréoBshows that
tions caused by the detector sensitivity at differentthe change in signal level from the top layer to the bottom
wavelengths and by the excitation cross sections aréyer has the same trend as that undgrekcitation.
removed* The dependence of transverse resolution and signal level
The transverse image resolution and the signal level as an the focal depth in the LS and SL media undereXcita-
function of the focal depth in the LS and SL media undpr 1 tion is shown in Fig. 9. Figure(8) confirms that the resolu-
excitation are shown in Figs.(d@ and 71b), respectively. In tion is diffraction limited within the given thickness of the
general, as the focal depth increases, the transverse resolmedia because of the long scattering mean free path length
tion becomes poor and the signal level is reduced. Within theinder 3 excitation.
top layer, the transverse resolution in the LS medium is bet- However, the signal level underp3excitation drops
ter than that in the SL medium. This result is consistent withquickly although the maximum number of scattering events
the behavior of the EPSF shown in Fig. 2 and in our previousn the media is less than BFee Fig. ®)]. It should be
study? pointed out that the number of scattering events is deter-
To understand the behavior near the interface, we definmined by the scattering mean free path length which is a
the rate of resolution degradatio, asB=dI'/d(fy). Fig-  statistically averaged parameter. In other words, even when
ure Aa shows thatB below the interface in the SL and LS the number of scattering events is one, i.e., wiigs |,
media is slightly slower and larger than that above the inter~64% of the incident photons are scattered according to
face, respectively. This feature can be explained by thd&eer’s law. These scattered photons propagate at a large
change in the anisotropy valgein the two layers. In gen- angle from their incident directions because of the small an-
eral, photons in the S layésmaller anisotropy valug) are  isotropy valueg under 3 excitation(see Table ). Conse-
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FIG. 10. Comparison of transverse image resolut@rand signal levelb) in the LS (solid) and SL(dashed media under p, 2p, and 3 excitation.

quently, the ® fluorescence strength reduces significantly10(b)]. To understand this feature, we take as an example the
due to the cubic dependence undgy 8xcitation, which L layer. In this medium, the ratio of the scattering mean free
leads to the pronounced decay of the signal level. This effegbath length under 8 excitation to that under 2 is approxi-

in the S layer is stronger than that in the L layer, so that thenately 3. Therefore, the dominant contribution to fluores-

signal level in the SL layer is lower than that in the LS layer.cence emission undemp3excitation is from ballistic photons

It should also be noted that the mean free path length fofithin the given thickness of the double-layer medium,

fluorescence light is significantly shorter than that for exci-which leads to a high signal level. On the other hand, be-
tation wavelength; therefore the scattering effect is strong foggyse of the smaller anisotropy value g, scattered illumina-
the fluorescence light, which results in a further reduction injgp, photons under @ excitation are distributed further away

signal level. from the geometric focus of the illumination beam than those
under Ip excitation. This feature together with the cubic
V. DISCUSSION dependence of excitation intensity makes the fBiores-

cence emission excited by scattered photon less efficient than
the 1p fluorescence emission, as indicted by Fig(kl0

As a demonstration of the significance of the double-
layer turbid medium model, we use it to calculate resolution
and signal level in human skin tissue undgr, 2p, and 3
excitation. Human skin tissue is a complex and highly scat-
tering thick tissue. It can be considered to be a double-layer

Compared with the results undep12p, and 3 exci-
tation, we can find that in both LS and SL medig 8xci-
tation gives the best transverse resolutigfig. 10a)],
whereas p excitation exhibits the worst transverse resolu-
tion. Within the top layer, B and 3 excitation leads to the
diffraction-limited resolution because of their quadratic or

cubic dependence on the excitation intensity and their larg ! v ) g 17
scattering mean free path lengths. structure mainly consisting of epidermis and derffiis.’We

A comparison of the signal level undep12p, and 3  assume that the wavelength is 365, 730, and 1095 nmgdpr 1
excitation[Fig. 10(b)] shows two interesting features. First, 2P, and 3 excitation, respectively, and that the fluorescence
the signal level in the SL medium is lower than that in the LsWavelength is 450 nm. The absorption and scattering param-
medium in all three cases. This feature is because small@ters of skin tissue at these wavelengths are summarized in

particles(smaller anisotropy valug) in the top layer results  Table 11*"**According to the anatomical structure of human

in a broader distribution of scattered photons than larger paskin,"#?*?*it can be assumed that the thickness of the epi-

ticles (larger anisotropy valug) in the top layer. Accord- dermis and dermis layers is 50 and 4b0, respectively.

ingly, the reduction of signal in the former case is stronger

The image resolutiol” and the signal levely of the

than that in the latter.

human skin double layers under three excitation situations

Second, in both LS and SL media the signal level underare shown in Figs. &) and 11b), respectively. Because of

3p excitation drops more slowly than that undgr 2xcita-

tion but more quickly than that underplexcitation[Fig.

the big difference of the scattering mean free path length
under Ip and 2 and 3 excitation,I" and » behave differ-

TABLE II. Absorption and scattering parameters of skin tissue unger2b, and 3 excitation.

Epidermis Dermis
Skin layers Ka (em™) g ls (um)  pa (cm™) g ls (um)
1p excitation (\,=365 nm) 100 0.72 9.1 7 0.72 21.8
2p excitation (\¢,=730 nm) 39 0.83 23.3 2.4 0.83 55.6
3p excitation (¢=1095 nm) 0.87 0.9 84.3 0.8% 0.9 84.3
FluorescenceNj =450 nm) 58 0.75 14.3 4.1 0.75 35.1

a/alues are from Ref. 24, and others from Ref. 23.
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FIG. 11. Comparison of transverse image resolut@rand signal levelb) in skin tissue under i, 2p, and 3 excitation.

ently. Figure 11a) shows that the resolution undep ®xci-  distributiorf® in the sense that the effect of scattering is less
tation is the best; a diffraction-limited resolution can be keptpronounced if the focal depth is within one mean free path
within the whole thickness of the double-layer skin structurelength.

However, such a diffraction-limited resolution value can be
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